

EXPANDING THE OVERALL EFFICIENCY OF TOMORROW’S DATA
CENTERS THROUGH PROCESSOR OPTIMIZATION

William Putnam
Computer Science/Computer Engineering

ABSTRACT: In order to solve the impending issues of data center inefficiencies, micro-level hardware-based and software-
based approaches were studied. A power model based on various processors was observed and calculated in order to
determine which type of processor works best given the type of process and the number of instances it must be carried out. In
addition, an application that can implement these models over an intranet of data servers was developed. The application
allows for toggling of various processors and their cores.

INTRODUCTION

As consumers start to utilize cloud-based services, the
data centers that house them can be very inefficient. On
average, data centers worldwide consume an average of 30
nuclear power plants’ worth of power, as well as a
supplement of round-the-clock diesel generators, in the
hopes of preventing any outage for any period of time. At an
average of 10% processor utilization per server, the wasted
power conflicts with the desire to shift to environmentally-
friendly trends.

While it’s easy to suggest turning off servers to save
power, the need to keep the servers running at maximum
capacity is greater than the amount of power used to run
them. This is because of the possibility of a distributed-
denial-of-service, or DDoS. When too many clients try to
access the server network at once, the servers must scramble
to accommodate all requests. Due to the large traffic, these
servers may not be able to respond to all the requests before
a request time-out. When too many of these time-outs occur,
the server network experiences DDoS. The recovery time
can take anywhere from minutes to days, and any important
data that has been transferred during this time may be lost.

Two of the major players in the recent rise of data centers
are the financial industry and the social media industry. In
the financial industry, financial transactions can occur at the
microsecond, and an estimated 86% of all transactions today
are computerized. There are financial networks all over the
world, as well as communications between cities and even
continents. In the social media industry, the importance of
networking sites such as Facebook, Twitter, and YouTube
have exerted influence in current world events. When a
certain event occurs, such as a revolution or a mass public
event, the amount of traffic about that event may spike in a
short time. To these two industries, a DDoS is not an option,
as it can mean money lost or business jeopardized.
Therefore, these industries and others will gladly pay a hefty
premium to make sure that such an event never happens.

And even these safeguards are not enough. In 2010,
Amazon’s data centers in Virginia were drawing so much
power off the grid that they caused a massive power outage,
both at the center and in the regional area. Not even the
mindset of keeping everything at maximum capacity is
working out for the industry.

And turning off some of the servers results in downtime,
as they need to be powered down and powered up once
more. It takes, on average, one to two minutes to get a data

server up and running properly, even with automated
methods. In times of heavy traffic, this gap in downtime is
all a potential DDoS needs to occur.

ASSESSING A POSSIBLE APPROACH

There are already a few limited implementations to
reduce the possibility of a DDoS and save power. An
especially relevant example is here at the University of New
Haven, where the servers in Echlin Hall are used for
virtualization on the network for the thousands of students
and faculty accessing the network at university-owned
computers. If there is a server with a heavy load and a server
with little to no load, some of the load is distributed from
the former to the latter. This is a fantastic macro-based
implementation that focuses on the network as a whole, both
saving power and preventing DDoS.

However, there are no real micro-based implementations
in practice that focus on each individual server. While
macro-based implementations are useful, they tend to see all
the systems on a network as ideal and uniform in spec. This
is usually not the case in some networks, where there may
be different types of hardware or software. Therefore, this
project will focus on the micro-based implementation over
the macro-based.

Think of the computer as a mammal. The two major
components of the mammal are the brain and the body. The
brain controls the body, and the body gives its services to
the brain. Without one, there is no point in having the other.
The same can be said for computers, only instead of the
body, there is the hardware, and instead of the brain, there is
the software. When designing an implementation to a
computer, both of these components must be taken into
consideration. In terms of this project, the processor is the
primary focus for the hardware, and an application of some
sort is the primary focus for the software.

CALCULATION OF A POWER MODEL

The processor’s name essentially describes its role; it
processes various values and carries out operations on them.
These values are then stored on the computer and/or
displayed to the user. Up until the late 2000s, a processor
had only one core, which meant that only one value could
be processed at a time, albeit within a small fraction of a
second. Hyper-threading technology, mainly utilized by
Intel, provided a duplicate of key hardware components to
simulate two processes at once, but was not widely

implemented. In recent years, however, processors with
multiple cores can be acquired at reasonable cost. These
processors allow multiple processes to be carried out at once
on each of its cores. A processor can have two, four, eight,
or even up to 64 cores, which allows for greater processing
abilities without necessarily having the same number of
processors with only one core.

To determine the amount of power that a processor uses,
we must consider the base, or idle, level of power required
to make the chip itself operational, plus the amount of
power needed to carry out the process multiplied by the time
required to carry it out, multiplied by the number of
instances that a processor needs to carry out the task. The
equation for the power needed can be represented as in
Equation 1.

Equation 1: The equation used for the power models.

 Overall, there were four different systems with individual
processors tested to find suitable power models. They are as
follows:

• BeagleBoard XM, 1 GHz ARM® Cortex™-A8
processor

• Dell™ Latitude E6500, 2.80 GHz Intel® Core 2
Duo™ T9600 processor

• Dell™ Optiplex 780, 2.66 GHz Intel® Core 2
Quad™ Q9400 processor

• Asus® Maximum IV Extreme Z, 3.40 GHz Intel®
Core™ I7-2600 Quad-Core processor

The processors were tested in eight different
benchmarking categories. All tests were conducted using a
National Instruments™ myDAQ and Labview data
acquisition software for the Beagleboard, and a Watts Up?
Pro plug load meter with Microsoft® Joulemeter software
for the other models. The BeagleBoard ran on a Linux-
based distribution known as Ångström, and the other
machines ran on the Windows® 7 operating system. Most
of the source code used was included in the Phoronix Test
Suite, which is available for both Windows® and Linux
machines. The tests were as follows:

• Idle
o No additional loads are placed on the

processor.
• Batch processing

o The resources needed for processing are
loaded first, and then the actual processing
takes place.

o A custom C program doing various
calculations is used for testing. It includes all

four forms of arithmetic, plus modulus
operations, if statements, for loops, and
functions separately from the main function.

• Interactive processing
o The processor waits for user input/output, such

as from a keyboard to a text editor.
• Realtime processing

o A multimedia file (audio, video, etc.) is
played.

• Server benchmark
o The server carries out standard testing

protocols for web-based hosting via the
Apache client.

• System benchmark
o All machines spend a few minutes running

Nexuiz, a fullscreen video game, which
utilizes many different components of the
computer.

• Processor benchmark
o The Beagleboard compresses files using

Phoronix’s 7-zip utility multiple times.
o For all other machines, the Primesieve

application’s algorithm is computed with a
large set of numbers as input.

• Blowfish encryption
o Files are encrypted and decrypted a certain

large number of times.
o The source code was obtained by MiBench,

which is hosted by the Electrical Engineering
and Computer Science department at the
University of Michigan at Ann Arbor.

Power data was collected similarly for all processors
except for the BeagleBoard. The Joulemeter software would
calibrate with the Watts Up? hardware to ensure accurate
readings of power consumption. It would then calculate the
power consumed over various instances of time for all
computer components and display them in a .csv file. Only
the processor’s power consumption was considered for data
collection.

The BeagleBoard could not be tested in this manner
because Joulemeter is only available for Windows®
operating systems. Therefore, the power needed to be
collected using the myDAQ. Two wires were connected to a
pair of prongs on the board that measured the current of the
processor and the voltage of the board. Since the resistance
of the prongs was given, we were able to determine the
power consumed over a short period of time in Labview, as
shown in Figure 1, using the equation 𝑃(𝑡) = 𝐼(𝑡)2𝑅.

Figure 1: The Labview application used for current to
power conversion for the Beagleboard.

Figures 2 (batch processing) and 3 (Blowfish encryption)

show examples of the data collected and plotted to
determine the power usage per processor. The data is
graphed with the number of instances to run the program on
the x-axis and the wattage consumed by the processor on the
y-axis. (The respective colors are blue, red, green, and
purple.)

Figure 3: The data collected for Blowfish encryption.

 As observed in Figure 2, there are some points in
which there is a tradeoff in power consumption. For three
instances of the batch processing, the ARM® processor
would be the most power-efficient processor, but for 30,
the I7 processor would be the most power efficient. In
some cases such as Figure 3, however, there were no
noticeable tradeoffs. It should be noted that these figures
are not inclusive of:

a) all possible processors on the market
b) the base power required by the system housing the

processor to make the system operational

DEVELOPMENT OF A CONTROLLER
APPLICATION

In data servers today, it is expected to have multiple
processors in one machine to allow for extra processing
power. An average server today can have four processors,
with about eight cores on each chip. In some cases, it’s not
necessary to have extra cores or processors running.
Therefore, a method of controlling these processors and
cores on each system is required.

Pandect, meaning comprehensive overview, is the
application that controls the processors on the network. It
was developed in the C++ programming language paired
with Win32 API headers. The application was developed in
the Windows® operating system for versions XP and newer,
both due to its availability in the workplace and the fact that
each type of operating system communicates with its
processor differently. In that regard, the time constraints for
this project prevented development on multiple operating
systems, whose methods of accessing the processor vary by
the operating system used.

Pandect monitors the status of all processor and cores of
each computer on an intranet, or local network, and toggles
which cores and/or processors should be used for a program.
There are three levels to the breakdown of the network: a
machine class for each server on the network, a processor
class for each processor on that system, and a core class for
each core on the processor. The processor class derives the
core class through a concept in computer science known as
polymorphism.

In the program window, an internal window is
dynamically created for each different machine on the
network, and a window within that window is created for
each different processor on the system. Each instance of a
core is stored in a vector-type variable in the processor
class, and each instance of a processor is stored in a vector-
type variable in the machine class.

Pandect’s controls are quite straightforward. Toggling a
core “off” moves all processes off it to other cores, while
toggling it “on” allows for assignment to them. Toggling a
processor off and on works in the same manner. However, a
machine cannot turn off all the processors of a machine, as
at least one is needed for its operation. This is the same
manner with the number of cores on the system.

It should be noted at this point that it is not possible to
fully “turn off” a processor or core, as there is always a

0

1000

2000

3000

4000

5000

6000

7000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

PO
W

ER
 C

O
N

SU
M

PT
IO

N
 (W

)

n (INSTANCES)

BLOWFISH ENCRYPTION

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

PO
W

ER
 C

O
N

SU
M

PT
IO

N
 (W

)

n (INSTANCES)

BATCH PROCESSING

Figure 2: The data collected for batch processing.

small amount of current keeping the processor ready for
future possible loads. In that regard, it is possible to redirect
the processes of an application to other cores and/or
processors. Thanks to modern processor technology known
as power gating, a processor’s core is considered “disabled”
if there are no processes on it for a certain amount of time.
The additional power needed to otherwise run the core is
therefore redirected to other cores or conserved altogether.

The application is also designed to include ceilings for
core and processor usage. There is also an automatic mode
for off-peak periods of time, and a manual mode for an
administrator to control the limits. Finally, as a safety
precaution to the network, there is an option for an
emergency override that automatically brings the units to
full power in case of a sudden spike in traffic to prevent a
denial of service error. The utilization of these features is to
be determined by the systems administrator in charge of the
network.

ACTIVITIES PENDING

As of publication of this paper, the development of
Pandect is still in progress. The application is currently
experiencing initialization problems. The code structure,
while being maintained as best as possible, requires
significant reformatting for distribution and error-checking
purposes. In addition to the application’s incompleteness,
the data for the power model has yet to be implemented into
an appropriate manner to be read into the program. Further
development of this application will continue in the school
year, and its expansion may be considered as a separate
project in the years to come.

In addition to the aforementioned features, plans are
being drafted to expand the application to the OS X and
Linux-based environments. This expansion will lead to
better compatibility with data centers of many different
interfaces. Also, terminal-based command issues are a
possibility for future versions of Pandect. In environments
where a GUI is unsuitable, Pandect can still be used
provided that the administrator enters a command that
specifies what mode the application should be in, what
computers should be affected, what the thresholds are, etc.

Due to the incomplete nature of this project, it is not
possible to draw a conclusion on whether or not the venture
is a success. Only time will tell whether or not Pandect can
truly live up to its name as an overview manager and
controller of data center processing.

ACKNOWLEDGEMENT

The author wishes to thank the following persons and
groups:

• Prof. Christopher Martinez, Ph.D., for his
assistance with all hardware-related support

• Prof. Alice E. Fischer, Ph.D., for her assistance
with all software-related support

• Prof. David W. Eggert, Ph.D., for his assistance
with initial debugging of testing software

• Mrs. Janice Sanderson, Mrs. Carol Withers, and
the personnel contributing to the SURF program,
for their kindness and generosity for providing
and administering a fantastic work environment

REFERENCES
1. Apache HTTP Server Project. Computer software. The
Apache HTTP Server Project. Vers. 2.0.xx. The Apache
Software Foundation, June 2013. Web. June-July 2013.
<http://httpd.apache.org/>.

2. Glanz, James. "Power, Pollution and the Internet." New
York Times 22 Sept. 2012: n. page 22 Sept. 2012. Web.
May-June 2013.

3. Guthaus, Matthew, Jeff Ringenberg, Todd Austin, Trevor
Mudge, and Richard Brown. Software.tar.gz. MiBench
Version 1. Vers. 1.0. University of Michigan at Ann Arbor,
2002. Web. June-July 2013.
<http://www.eecs.umich.edu/mibench/>.

4. Microsoft Research. Joulemeter. Computer software.
Joulemeter - Microsoft Research. Vers. 1.2. Microsoft
Research, 29 Sept. 2011. Web. June-July 2013.
<http://research.microsoft.com/en-us/downloads/fe9e10c5-
5c5b-450c-a674-daf55565f794/>.

5. Phoronix Test Suite. Computer software. Phoronix Test
Suite - Linux Testing & Benchmarking Platform,
Automated Testing Framework, Open-Source
Benchmarking. Vers. 4.6. Phoronix Media, 2008. Web.
June-July 2013. <http:// http://www.phoronix-test-
suite.com/>.

BIOGRAPHY

William Putnam, of Old Saybrook, CT, is a junior at the
University of New Haven. He is pursuing a bachelor’s
degree in both computer science and computer engineering.
His hobbies include gaming and playing the saxophone. He
wishes to go for his master’s degree in Japan, and hopes that
one day he may start his own video game company.

	INTRODUCTION
	ASSESSING A POSSIBLE APPROACH
	CALCULATION OF A POWER MODEL
	DEVELOPMENT OF A CONTROLLER APPLICATION
	ACTIVITIES PENDING

